Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase.
نویسندگان
چکیده
Endogenous protein kinase inhibitors are essential for a wide range of physiological functions. These endogenous inhibitors may mimic peptide substrates as in the case of the heat-stable protein kinase inhibitor (PKI), or they may mimic nucleotide triphosphates. Natural product inhibitors, endogenous to the unique organisms producing them, can be potent exogenous inhibitors against foreign protein kinases. Balanol is a natural product inhibitor exhibiting low nanomolar Ki values against serine and threonine specific kinases, while being ineffective against protein tyrosine kinases. To elucidate balanol's specific inhibitory effects and provide a basis for understanding inhibition-regulated biological processes, a 2.1 A resolution crystal structure of balanol in complex with cAMP-dependent protein kinase (cAPK) was determined. The structure reveals conserved binding regions and displays extensive complementary interactions between balanol and conserved cAPK residues. This report describes the structure of a protein kinase crystallized with a natural ATP mimetic in the absence of metal ions and peptide inhibitor.
منابع مشابه
THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE
We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...
متن کاملBalanol analogues probe specificity determinants and the conformational malleability of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase catalytic subunit.
The protein kinase family is a prime target for therapeutic agents, since unregulated protein kinase activities are linked to myriad diseases. Balanol, a fungal metabolite consisting of four rings, potently inhibits Ser/Thr protein kinases and can be modified to yield potent inhibitors that are selective-characteristics of a desirable pharmaceutical compound. Here, we characterize three balanol...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملInhibition of protein kinases by balanol: specificity within the serine/threonine protein kinase subfamily.
Balanol is a potent inhibitor of cyclic AMP-dependent protein kinase and protein kinase C, acting competitively with ATP with an affinity 3000 times that of ATP. We tested the capacity of balanol to inhibit representative serine- and threonine-specific protein kinases from the protein kinase subfamily that shares a common conserved catalytic core with cyclic AMP-dependent protein kinase. Balano...
متن کاملDifferential and selective inhibition of protein kinase A and protein kinase C in intact cells by balanol congeners.
The fungal metabolite balanol is a potent inhibitor of protein kinase A (PKA) and protein kinase C (PKC) in vitro that acts by competing with ATP for binding (K(i) approximately 4 nM); congeners of balanol show specificity for PKA over PKC. We have characterized the effects of balanol and 10"-deoxybalanol in intact cells to determine whether these compounds cross the cell membrane and whether t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 8 شماره
صفحات -
تاریخ انتشار 1999